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Abstract Based on our previous study on the elementary characterization of the
fuzzy symmetry, we inquired the static state fuzzy symmetry of some molecules and
their molecular orbitals (MO). Now we will analyze the fuzzy symmetry of some sim-
ple linear tri-atomic dynamic systems in connection with the reaction. Three related
transformations will mainly be studied in detail. These three transformations are (1)
the space inversion transformation about the mid-atom as the center, (2) the reaction
reversal transformation in relation to the reaction B + AC→BA + C and (3) the joint
transformation of the above two. We examined the variation for the internal configura-
tion of these systems owing to the operation of above three transformations, and then
establish methods to calculate the fuzzy symmetry characterization, such as the mem-
bership functions for the MOs of such linear tri-atomic dynamic systems in relation
to these transformations. We examined the variation regularity in relation to the fuzzy
symmetry characterization for the MOs of these systems along the intrinsic reaction
coordinate (IRC) and dividing line. The variation regularity and the distribution for the
fuzzy symmetry characterization in related internal configuration coordinate space are
also analyzed. An IRC-scale is suggested for internal configuration coordinate space
in this paper.
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1 Introduction

In theoretical chemistry, research on fuzzy symmetry is an interesting field. Important
results have been obtained [1–5]. In our previous work [6–11], based on the study of
the fuzzy symmetry characterization of molecules and molecular orbitals (MOs), we
have analyzed the fuzzy symmetry of the static molecules and their MOs. Now we
will study the fuzzy symmetry related to simple reaction dynamic systems and start
with the simplest linear tri-atomic system. For the symmetry of such systems, many
papers have been published. Among them, the conservation rule of orbital symmetry
by Woodward and Hoffmann (W–H rule) [12] is important. By means of the quan-
tum field theory, we have analyzed W–H rule [13,14] for the symmetry in relation to
sigmatropic reaction. We pointed out that there is not any perfect point group symme-
try, but only the perfect symmetry transformation in relation to the joint (combined
or union) reaction reversal and some point symmetry transformation. The simplest
system with such kind of symmetry is the H3-system. Since the first potential energy
surface of linear H3-system [15] was announced, there are a lot of papers in relation
to this system and other linear tri-atomic system B· · · A· · · C published [16,17]. They
are mainly concerned with the work of the potential energy surface that relates with
the reaction: B + AC→BA + C. Now we will analyze the subject in relation to this
symmetry. For the H3 system or the tri-atomic B· · · A· · · C system with the same B
and C atom, there are not any point group symmetry in general. But using the atomic
distances of AB and AC as the internal configuration coordinates, the related potential
energy surface ought to be provided with the reflection symmetry about the dividing
surface (dividing line—the diagonal line in above internal configuration coordinate
plane). Such symmetry about the dividing surface will not show in the corresponding
potential energy surface of the linear tri-atomic B· · · A· · · C system with different B
and C atoms.

In this paper we will analyze the symmetry and fuzzy symmetry for linear tri-atomic
B· · · A· · · C system by means of some typical examples. In addition, the point group
symmetry transformation, the reaction reversal transformation and their combination
[13,14] will be studied. Here reaction reversal transformation means that the relate
system with the initial state ought to be reflected to a new state about the dividing
surface (or line) [17,18] as a mirror. Generally speaking, such transformation is a kind
of symmetry transformation for the whole potential surface, but not for such dynamic
system, itself. The reaction reversal transformation may be denoted as R̂. In some
cases, it may often unite with a certain point group transformation Ĝ to form a new
joint symmetrical transformation ĜR̂ for the dynamic system-self. In this paper Ĝ is
usually the space inversion transformation P̂.

2 Computation Detail

The atomic positions in the linear B· · · A· · · C system are specified from A, B and C
by 1, 2 and 3, respectively, as shown in Fig. 1, and the atomic distances by R12 and
R13, respectively.
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Fig. 1 The linear three-atomic
B· · · A· · · C system and atomic
numbering

            R12 R13

B A C

 2                     1                    3

Since the atomic intervals in the system may be varied, the atomic criteria (Y)
are depended not only on the atomic intrinsic property but also on the atomic related
position (internal configuration coordinate). For the linear B· · · A· · · C tri-atomic sys-
tem, the atomic related position may be determined by atomic intervals R12 and R13.
The atomic criteria may thus be denoted as follows:

YA = YA(R12, R13), (1a)

YB = YB(R12, R13), (1b)

YC = YC(R12, R13). (1c)

For this system, both atomic related positions (R12 and R13) and atomic criteria (YA,
YB, YC) ought to change under the operation of transformation Ĝ:

Ĝ(R12, R13) = (RG12, RG13) (2a)

Ĝ(YA, YB, YC) = (YGA, YGB, YGC) (2b)

If Ĝ is the space inversion transformation P̂ about the A atom as the centre, then:

P̂(R12, R13) = (RP12, RP13) = (R13, R12), (3a)

P̂(YA, YB, YC) = (YPA, YPB, YPC) = (YA, YC, YB). (3b)

If Ĝ is the reaction reversal transformation R̂, then:

R̂(R12, R13) = (RR12, RR13) (4a)

R̂(YA, YB, YC) = (YRA, YRB, YRC) (4b)

In general, the internal configuration coordinates and the atomic criteria of initial and
final state can not be interrelated by simple ways due to the operation of R̂. On the
other hand, for the union (or joint) transformation, P̂R̂= R̂P̂:

P̂R̂(R12, R13) = (RPR12, RPR13) = (RR13, RR12) (5a)

P̂R̂(YA, YB, YC) = (YPRA, YPRB, YPRC) = (YRA, YRC, YRB) (5b)

As we known [7,8], the membership functions (µ) for a certain molecule or MO sys-
tem in relation to the operation of transformation Ĝ may be calculated. For our system,
µ(Ĝ) may be calculated as:

µ(Ĝ) = (YA ∧ YGA + YB ∧ YGB + YC ∧ YGC)/(YA + YB + YC) (6a)
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If the normalization criterion is introduced, the denominator in Eq. 6a would equal to
one, and the equation would be simplified as:

µ(Ĝ) = (YA ∧ YGA + YB ∧ YGB + YC ∧ YGC) (6b)

Therefore, the membership functions of the transformations P̂, R̂ and R̂P̂, would be-
come, respectively:

µ(P̂) = YA ∧ YPA + YB ∧ YPB + YC ∧ YPC = YA + 2YB ∧ YC (7a)

µ(R̂) = YA ∧ YRA + YB ∧ YRB + YC ∧ YRC (7b)

µ(P̂R̂) = YA ∧ YPRA + YB ∧ YPRB + YC ∧ YPRC

= YA ∧ YRA + YB ∧ YRC + YC ∧ YRB (7c)

If atoms B and C are different, all of these membership functions would be less than
one if Eqs. 7a–c are used. If B and C are the same while R12 �= R13 and YB �= YC
are true, the membership functions would not be the same, but if YB = YRC and
YC = YRB are true, the corresponding membership functions in relation to transfor-
mation P̂R̂ would be equal to one. In other words, there is some symmetry in relation
to the joint reaction reversal and parity transformation (P̂R̂) for such system [13,14],
but the membership functions for both R̂ and P̂ are not equal to one. That is, there is
no accurate symmetry for R̂ and P̂, but only fuzzy symmetry for them. If B and C are
different, the system has only some related fuzzy symmetry in relation to P̂R̂.

Now we turn to determine the various atomic criteria for the dynamic system. In the-
oretic chemistry region, σMO occupied by single electron (σSMO) and its neighbour
σMOs, occupied and virtual (noted as σOMO-1 and σVMO-1, respectively) are more
interesting. We suggested that the atomic criterion for a certain MO may be assigned
to the square or summation of square for one or more LCAO coefficients according to
the MO composition of the AOs [7,8]. This scheme may also be applied to our present
system. However, it is noteworthy that in the dynamic systems the LCAO coefficients
depend on the internal configuration coordinate of the system. Therefore, the atomic
criteria for various internal configuration coordinate conditions will be different.

Now we consider a certain state J, corresponding to the point (R12, R13) of the inter-
nal configuration coordinate plane for the linear tri-atomic B· · · A· · · C system, and
the state J will be changed to state GJ under transformation Ĝ , i.e, the state J transform
to state GJ. Now we analyze the space inversion transformation (Ĝ = P̂) about atom
A as the symmetrical centre. As shown in Fig. 2, after the operation of space inversion
transformation (Ĝ = P̂), the linear tri-atomic system B· · · A· · · C ought to be changed

initial

state

        R12 R13

B A C

↓( ^G = ^P )

        R12 R13

B A C

↓( ^G = ^R )

final

state

    RP12=R13      RP13=R12

C A B

        RR12          RR13

B A C

Fig. 2 The linear three-atomic B· · · A· · · C system under operations P̂ and R̂
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from the initial state J to the final state PJ, and B and C will commute, and so will
R12 and R13 (i.e., RP12 = R13; RP13 = R12). If B and C are the same moreover the
R12 equals R13, the final state and the initial state may be identical; such system will
have the usual space inversion symmetry, and the membership function in relation to
transformation P̂ will equal unity. For the majority cases, however, the membership
functions in relation to P̂ will be less than one. The reaction reversal transformation
(Ĝ = R̂) is also shown in Fig. 2. From the initial state J to the final state RJ, no commu-
tation exists between neither B and C nor R12 and R13. If the initial state J belongs to
intrinsic coordinate (IRC) path, the intrinsic reaction coordinate value (xJ-IRC) may
be obtained using quantum chemical programs such as Gaussian [19]. The intrinsic
reaction coordinate value (xRJ-IRC) for the final state RJ ought to be the opposite
number of xJ-IRC, i.e.,

(xRJ-IRC) = −(xJ-IRC). (8)

According to state RJ, we may obtain RR12 and RR13. In general, RR12 and RR13 are
different from RP12 and RP13, respectively. That is:

RR12 �= RP12 = R13, (9a)

RR13 �= RP13 = R12. (9b)

If B and C are same atoms, (RR12, RR13) and (RP12, RP13) may be the equivalence.
For such case, the dividing curve (line) would be the diagonal line in the internal con-
figuration coordinate (RR12, RR13) space. For states in the dividing line, membership
functions in relation to both transformations P̂ and R̂ ought to equal one, whereas for
states elsewhere, the membership functions in relation to both P̂ and R̂ ought to be
less than one even though they may be equal.

As shown in Fig. 3 clearly, the operation results for the joint transformation P̂R̂ are
the same as those for R̂P̂. For the linear tri-atomic system B· · · A· · · C with the same

initial

state

        R12 R13

B A C

↓( ^P )

        R12 R13

B A C

↓( ^R )

      RP12=R13      RP13=R12

C A B

↓( ^R )

        RR12          RR13

B A C

↓( ^P )

final

state

     RRP12=RR13  RRP13=RR12

C A B
     RPR12 =RR13   RPR13= RR12

C A B

Fig. 3 The linear three-atomic B· · · A· · · C system under joint operation P̂R̂
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atoms B and C, we have:

RR12 = RP12 = R13 (10a)

RR13 = RP13 = R12, (10b)

And so the final and initial states in Fig. 3 are the same. Therefore, there is the joint
transformation P̂R̂ for such system, and its corresponding membership function equals
one. If atoms B and C are different, the related membership function is less than one.
On the other hand, for the system with the same atoms B and C the membership func-
tion in relation to R̂ or P̂ alone is usually less than one, except for those in the dividing
surface, whereas the membership function in relation to the joint transformation P̂R̂
will be one no matter what the state belongs to dividing line or not.

Owing to the operation of R̂, the initial state {R12, R13} would change into the final
state {RR12, RR13} in general. For the linear tri-atomic system B· · · A· · · C with the
same atoms B and C, the final state (RR12, RR13) can be obtained by Eq. 10. Regardless
the B and C are the same or not, for the states in the dividing surface, the R̂ ought to
be equivalent to the identity transformation Ê, and we may get the:

(RR12, RR13) = (R12, R13). (11)

If the state in the IRC path, the final state (RR12, RR13) may be obtained by Eq. 8.
However, the so-called general cases including states other than in the dividing sur-
face and IRC path must also be examined. Only the IRC path and corresponding IRC
value (x-IRC) can be obtained using Gaussian [19], but the dividing surface can not
be obtained directly. If B and C are different, the related dividing surface may be not a
straight line (i.e., not a one dimensional plan). How can we obtain the state generated
by the operation of R̂? To start with, we examined Fig. 4, where Fig. (A) and (B) denote
the two typical examples with B and C being and not being the same, respectively.
In the figure, the vertical axis denotes the internal configuration coordinate (R12 and
R13) of the state, and the abscissa axis the IRC value. As shown in the figure, both R12
and R13 are the monotonic functions of the IRC value. R12 and R13 are monotonically
increasing and decreasing, respectively. We may use the IRC values to denote R12 and
R13, and call them the IRC-scale of R12 and R13. The IRC value is also the IRC-scale
of IRC path itself. Corresponding to a certain state in the IRC path,R12 and R13 ought
to be the same IRC-scale value. For the state outside of the IRC path, R12 and R13
IRC-scale values ought to be different. When both of these two IRC-scale values equal
zero, this corresponds to the transition state. When B and C are the same, the curves
of R12 and R13 ought to cross in the transition state. However, when B and C are
different, the curves of R12 and R13 ought to cross not in the transition state.

We may use R12(a) and R13(a′) to denote R12 and R13 both of which have the IRC-
scale values a and a′, respectively. And use {R12, R13} to denote any state of the linear
tri-atomic B· · · A· · · C system. Therefore the {R12(a), R13(a)} and {R12(a), R13(b)}
(b �= a) denote states in the IRC path and the outside of the IRC path, respectively.
Under the operation of R̂, the initial state {R12(a), R13(b)} of the linear tri-atomic
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Fig. 4 Variation of the internal configuration coordinates for the linear three-atomic B· · · A· · · C systems:
R12 (solid curve) and R13 (dotted curve) along the IRC at HF/STO-3G. (A) HHH system; (B) HHF system
(R12 =RHH; R13 =RHF)

B· · · A· · · C system will be changed to:

R̂{R12(a), R13(b)} = {RR12(a), RR13(b)} = {R12(−b), R13(−a)} (12a)

If B and C are the same atoms, from inspection of Fig. 4(A) we have:

R̂{R12(a), R13(b)} = {R12(−b), R13(−a)} = {R13(b), R12(a)} (12b)

That is, R12(a) and R13(b) of the initial state will be commute under operation R̂ for
systems with the same B and C atoms. For the initial state in the IRC path, Eq. 12a
becomes:

R̂{R12(a), R13(a)} = {RR12(a), RR13(a)} = {R12(−a), R13(−a)} (13a)

If B and C are the same, we have:

R̂{R12(a), R13(a)} = {R12(−a), R13(−a)} = {R13(a), R12(a)} (13b)

The state in the dividing surface (line) ought to be unchanged due to operation R̂.
Using Eq. 12a, we found that state {R12(a), R13(b)} in the dividing line satisfies a
condition:

a = −b (14a)

On the other hand, state {R12(a), R13(b)} in the IRC path ought to satisfy a different
condition:

a = b. (14b)

As for the transition state (TS), i.e., the state at the point of intersection between the
dividing line and the IRC path, this state must satisfy the following condition:

a = b = 0 (14c)
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Therefore, for TS, the reaction reversal transformation R̂ is equivalent to the identity
transformation Ê. Various states {R12(a), R13(a)} in the IRC path may be obtained
using program Gaussian [19]. According to Eq. 14a, the state in dividing line ought to
be {R12(a), R13(−a)}. This may be a simplification and approximation method for
the calculation of dividing surfaces. It is noticed that Eq. 14 is true whether B and C
are the same or not.

For the initial state {R12(a), R13(b)} of the linear tri-atomic B· · · A· · · C system,
R12 and R13 will be commute under operation of the space inversion P̂ about A, i.e.,

P̂{R12(a), R13(b)} = {RP12(a), RP13(b)} = {R13(b), R12(a)}. (15)

This equation is similar to Eq. 12b. However, Eq. 12b may be true only for systems
with the same B and C atoms, but Eq. 15 is true whether or no. In general, we have,

{RP12(a), RP13(b)} �= {RR12(a), RR13(b)}. (16a)

Only for the cases with the same B and C do we have,

{RP12(a), RP13(b)} = {RR12(a), RR13(b)} (16b)

It must be pointed out that R̂ and P̂ are different transformations even if B and C are
the same. Since in such case, the same B and C would commute under transformation
P̂, but they would not commute under transformation R̂. This is important for the
analysis of the fuzzy symmetry of MOs. The membership function in relation to a cer-
tain transformation ought to be connected with only the square term of the phase, the
membership functions in related to R̂ and P̂ would be equal for systems with the same
B and C. The analysis in connection with the representation component may differ
evident. On the other hand, the membership functions of the system with different B
and C ought to be unequal under R̂ and P̂.

As for joint transformation P̂R̂, the initial state {R12(a), R13(b)} of linear tri-atomic
B· · · A· · · C system may be transformed as:

P̂R̂{R12(a), R13(b)} = P̂{RR12(a), RR13(b)} = {RR13(b), RR12(a)}
= P̂{R12(−b), R13(−a)} = {R13(−a), R12(−b)}. (17a)

For the system with the same B and C, using Eq. 16b, we have,

P̂R̂{R12(a), R13(b)} = {R12(a), R13(b)}. (17b)

Therefore, for such system, the membership function related to the joint transformation
P̂R̂ would be unity. In other words, the system stay unchanged under transformation
P̂R̂, and the related representation would be pure (i.e., pure symmetrical or pure asym-
metrical). For the system whose B and C are different, the membership function of
corresponding joint transformation P̂R̂ will be less than one, and such system has
only some fuzzy symmetry in relation to the joint transformation P̂R̂. The related
representations would be not pure.
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By the way, as shown in Fig. 4, both R12 and R13 are monotonic functions of the
IRC value, so we may introduce the IRC-scale to substitute the common nature scale
(e.g. ?–angstrom). Some examples will be given in the section below. It should be
noted that using the IRC-scale to denote R12 and R13 will require them not too small
in common nature scale, otherwise R12 and R13 may not correspond to any IRC-scale
values.

3 The fuzzy symmetry for the transition state of the B· · · A· · · C system

For the linear B· · · A· · · C system, to start with, we may find the transition state (TS)
using the Gaussian program [19], and analyze its related fuzzy symmetry. R̂ and the
identity transformation Ê are equivalent for TS. We will examine the fuzzy parity sym-
metry in relation to the space inversion transformation, P̂. Using Gaussian program
to find the related intrinsic reaction coordinate (IRC), we may then obtain the LCAO-
MO coefficient of the system {R12(a), R13(a)} point by point along the IRC path, and
find their atomic criteria, YA, YB and YC according to the single point calculation.
After that, we may obtain the state {R12(−a), R13(−a)} under operation R̂ as well
as related atomic criteria, YRA, YRB and YRC. Therefore, we can analyze the fuzzy
symmetry along the whole IRC path. At last, we may extend to investigate the various
states {R12, R13} in the whole internal configuration coordinate space.

We first examine the fuzzy symmetry of TS. Since for TS, R̂ is equivalent as Ê, so
we have:

R̂(R12TS, R13TS) = (RR12TS, RR13TS) = (R12TS, R13TS) (18a)

R̂(YATS, YBTS, YCTS) = (YRATS, YRBTS, YRCTS) = (YATS, YBTS, YCTS)

(18b)

and as P̂R̂ is equivalent to P̂, we obtain:

P̂R̂(R12TS, R13TS) = P̂(R12TS, R13TS) = (R13TS, R12TS) (19a)

P̂R̂(YATS, YBTS,YCTS) = P̂(YATS, YBTS,YCTS) = (YATS, YCTS,YBTS) (19b)

For the same B and C, since, in general, R12 �= R13, and thus YB and YC are also
different. However for TS, both YBTS = YRCTS = YCTS = YRBTS and R12TS = R13TS
may be true. Therefore, for the whole skeleton and MOs, the membership functions
in relation to P̂R̂= P̂ ought to be unity, and the irreducible representations of the MOs
would be pure. For example, σSMO of TS of H· · ·H· · ·H system belongs to the pure
asymmetrical irreducible representation Au, whereas σOMO-1 and σVMO-1 belong
to the pure symmetrical one Ag, as shown in Fig. 5.

For other liner tri-atomic B· · · A· · · C systems with the same B and C, e.g., the
H· · · X· · · H (X=halide atom), the σSMO, σOMO-1 and σVMO-1 of TS also belong
to pure symmetrical or pure asymmetrical irreducible representations. The σMOs with
pure symmetrical irreducible representations are formed by combining two sAOs of H
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Fig. 5 MOs of the transition
state of H· · ·H· · ·H system and
corresponding irreducible
representations

+ - + VMO-1(Ag)

+ 0 - SMO(Au)

+ + + OMO-1(Ag)

atoms with the same phases and one sAO of X atom. The σMOs with pure asymmet-
rical irreducible representations are formed and combined by means of two sAOs of H
atoms with the different phases and one pz-AO of X atom. The πMO is formed only
by py- or px-AO of X atom. In essence, and they mainly keep the characteristic of the
original AOs. For TS of H· · ·F· · ·H system, the LCAO-MO in relation to σOMO-1,
σSMO and σVMO-1(α-spin), at the HF/STO-3G level, may be denoted respective as:

�(σOMO-1) = 0.4812�(1F, 2pz) + 0.5252�(2H, 1s) − 0.5252�(3H, 1s)

�(σSMO) = 0.1022�(3F, 1s) − 0.5611�(3F, 2s) + 0.7425�(2H, 1s)

+ 0.7425�(3H, 1s)

�(σVMO-1) = 0.9581�(1F, 2pz) − 0.5795�(2H, 1s) + 0.5795�(3H, 1s)

(20a)

These MOs (β-spin), at the same level, may be denoted respectively as:

�(σOMO-1) = 0.7953�(1F, 2pz) + 0.2799�(2H, 1s) − 0.2799�(3H, 1s)

�(σSMO) = 0.0926�(3F, 1s) − 0.5239�(3F, 2s) + 0.7453�(2H, 1s)

+0.7453�(3H, 1s)

�(σVMO-1) = −0.7191�(1F, 2pz) + 0.7302�(2H, 1s) − 0.7302�(3H, 1s)

(20b)

The membership function in relation to the joint transformation P̂R̂= P̂ ought to be
unity. For both α and β spin states, σSMO is symmetrical, but σOMO-1 and σVMO-1
are asymmetrical. For calculation at other levels, the MO may differ in form, but all
the membership functions related to P̂R̂= P̂ will be unity. As for other X (Cl, Br, I)
in the H· · ·X· · ·H system, the TS would be similar. By the way, for the H3 system,
the σSMO is asymmetrical, and the σOMO-1 and σVMO-1 are symmetrical. How-
ever, its membership function for P̂R̂ ought to be still unity. For the linear tri-atomic
B· · · A· · · C system, only if B and C are the same, the MOs of the transition state would
belong to the pure symmetrical or pure asymmetrical irreducible representations.

For the TS of a B· · · A· · · C system with different B and C, e.g., H· · ·H· · ·F, it
will be more complicated—the representations that σSMO, σOMO-1 and σVMO-1
belong to will be not pure symmetrical nor pure asymmetrical. However, R̂ and Ê
are still equivalent for TS, and the membership functions in relation to R̂ ought to be
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Table 1 The membership functions for the MOs of the transition state of H· · ·H· · ·X (X=halide atom) in
relation to transformation P̂R̂= P̂

α-spin∗ β-spin∗

σOMO-1 σSMO-O σVMO-1 �OMO-1 σSMO-V σVMO-1

HHF 0.6151 0.6632 0.8884 0.5235 0.6733 0.9338
HHCl 0.9137 0.5125 0.8458 0.4360 0.6140 0.9762
HHBr 0.9171 0.8623 0.7640 0.4064 0.9101 0.9725
HHI 0.4265 0.7462 0.7608 0.4875 0.8185 0.9388
∗ For σSMO, the α-spin state is occupied, but the β-spin state is virtual
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Fig. 6 The membership functions of H· · ·H· · ·X (X = halide atom) for σSMO of the transition state at
HF/STO-3G in relation to P̂R̂ (=P̂)

unity. Equations 18 and 19 are true, too. The fuzzy symmetry in relation to P̂ may be
analyzed as the common linear tri-atomic molecule [7]. As shown in Table 1, there are
the membership functions in relation to P̂R̂= P̂ (at HF/STO-3G level) for some σMOs
of H· · ·H· · ·X system (X=halide atom) transition state. For various spin states of the
same MO, the membership functions will be different. As shown in Fig. 6, there are
the membership functions in relation to P̂R̂= P̂ for σSMO (two different spin states)
of the H· · ·H· · ·X (X=halide atom) TS.

Figure 7 shows the membership functions in relation to P̂R̂= P̂ for σOMO-2,
σOMO-1, σSMO and σVMO-1 of TS of the H· · · H· · · F system (at the HF/STO-
3G level). The irreducible representation components in relation to P̂R̂= P̂ may also
be different between different MOs. For the MOs of TS of the H· · ·H· · ·X system, the
representation components in relation to P̂R̂= P̂ may be calculated using the method
for the usual linear molecule, in principle.
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4 The fuzzy symmetry for the H· · ·H· · ·H system

4.1 The fuzzy symmetry of H· · ·H· · ·H system in the IRC path and dividing line

Now we examine the linear tri-atomic H3system: H· · ·H· · ·H. That is the simplest
system with joint point group transformation and reaction reversal symmetry [13,14].
As mentioned above, its TS has the usual symmetrical center and the membership
function in relation to P̂ ought to be unity and the corresponding MO irreducible
representation will be pure symmetrical or pure asymmetrical. The irreducible rep-
resentation of σSMO is pure asymmetrical, but those of σOMO-1 and σVMO-1 are
pure symmetrical.

Besides the TS, the states in IRC path, their membership functions in relation to P̂
will be less than one, and the corresponding irreducible representations will be not pure
symmetrical nor pure asymmetrical. On the other hand, owing to such system has the
perfect symmetry in relation to the joint transformation P̂R̂, the related membership
function ought to be one for the states in the IRC path, and the corresponding MOs
belong to pure symmetrical or pure asymmetrical irreducible representations. Differ-
ent spin states of σSMO belong to the pure asymmetrical irreducible representations,
but those of σOMO-1 and σVMO-1 belong to the pure symmetrical one.

For the MOs of the state {R12(a), R13(a)} in the IRC path calculated above, we may
obtain their membership functions in relation to R̂ and P̂. According to the calculation
results for linear tri-atomic H3—system using Gaussian [19] at the HF/STO-3G level,
we may further calculate these membership functions. In Fig. 8, (A)–(C) denote the
membership functions respectively for σSMO, σOMO-1 and σVMO-1 of the H3-sys-
tem, in which α and β denote the corresponding spin states of related MOs, and R and
P denote the membership functions respectively in relation to R̂ and P̂. As shown in the
figure, all the membership functions in relation to P̂R̂ are unity, and the membership
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Fig. 8 Variation of the membership functions of H· · ·H· · ·H system with IRC values along the IRC path
for σSMO(A), σOMO-1(B), σVMO-1(C) with various spin states under transformations P̂R̂, R̂ and P̂

functions in relation to R̂ and P̂ are equal for the same MO with the same spin state,
although there are somewhat difference for the same MO with different spin states.
For TS (IRC=0), all these membership functions are unity. This is always true for
the linear tri-atomic B· · · A· · · C system with the same B and C.

For the MOs of the H· · · H· · · H system in the states along the IRC path, we may
consider their irreducible representation (i.e., symmetrical and asymmetrical) compo-
nents in relation to P̂. Figure 9 denotes the variation of the irreducible representation
components for the σOMO-1, σVMO-1 and σSMO of this system along the IRC
path. For the states in the IRC, the IRC coordinate values (IRC-scale) are denoted as
x-IRC. For x-IRC=0 (transition state), the related irreducible representations ought
to be pure. For σOMO-1 and σVMO-1, their symmetrical representation compo-
nent, X(G)=1, and the asymmetrical one, X(U)=0, but for the σSMO, X(G)=0 and
X(U)=1. For other states, the irreducible representations will not be pure, yet their
main representation components will usually be related to the same as for the transition
state, i.e., for σOMO-1 and σVMO-1, the main representation components will be
related to symmetrical, whereas for σSMO to asymmetrical. For such system, the irre-
ducible representation components in relation to P̂R̂, which the MOs belong, ought to
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Fig. 9 Variation of the irreducible representation components of H· · ·H· · ·H system along the IRC path
for σOMO-1(A), σVMO-1(B), σSMO(C), with various spin state in relation to transformation P̂

be either pure symmetrical or pure asymmetrical, the same as those for corresponding
TS. This is, X(G)=1 and X(U)=0 for σOMO-1 and σVMO-1, meanwhile, X(G)=0
and X(U)=1 for the σSMO. For R̂, there is no asymmetrical case, and so we will not
be analyzed the related (symmetrical and asymmetrical) representation components.
Interestingly, generally speaking, the H· · ·H· · ·H system (IRC�=0) is provided with
the P̂R̂ symmetry, but without the pure R̂ nor P̂ symmetry.

It is notable that transformations R̂ and P̂ are different. For TS, owing to the opera-
tion of P̂, both the atoms and phases of MOs will change in relation to space inversion
(Fig. 5). Under transform P̂, atoms 2 and 3 and their orbital phases will be commute,
but after operation R̂, they will not. For the system with the same atoms 2 and 3, under
the two transformations, the MO with symmetrical representation Ag will change in
the same way, but the MO with asymmetrical representation Au will change differ-
ently. For the non-transition state system with the same atoms 2 and 3, the change due
to the operation of both transformations include commutation between R12and R13.
Under P̂, both atoms 2 and 3 and their phases ought to commute, but under R̂, atom 1
only moves between atoms 2 and 3, and the LCAO-MO coefficients may change in a
way different from that under P̂.
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As for the states along the dividing line, the linear tri-atomic B· · · A· · · C system
with the same B and C, such as the H· · · H· · · H system, has the perfect symmetry
under space inversion transformation P̂ and reaction reversal transformation R̂, cor-
responding to the identity transformation Ê. Therefore the membership functions in
relation to P̂, R̂ and P̂R̂ ought to be unity.

4.2 The fuzzy symmetry for the internal configuration space of the linear
H· · · H· · · H system

Now, we examine the internal configuration states for the linear H3-system outside of
the IRC path and the dividing line. For the linear H3-system, under space inversion P̂
about the middle H atom as the inversion centre, atoms 2 and 3 and their phases will
be exchanged. Under operation R̂, the initial state along the IRC path will be change
about the TS as its centre, and so the x-IRC will be multiply with (−1) to form the
unique final state. When the state outside of the IRC path, the final state under oper-
ation R̂ ought to be the reversal about the dividing surface (line) [13,17] which is a
super-surface cross cut to the IRC path orthogonally through the TS. The dividing sur-
face may divide the internal configuration coordinate space into two parts: the reagent
region and the product region. For the linear H3-system, the dividing surface is a one
dimensional line, the diagonal line of R12 and R13 internal configuration coordinate
plane with R12 = R13. For such H3-system under operation R̂, R12 and R13will com-
mute. For the fuzzy symmetry of this system outside of the IRC path, the MO-LCAO
coefficients can be calculated point by point using Gaussian [19], and then the related
criteria, membership functions and representation components can be obtained. After
that, the corresponding contour map can be obtained using the grid method. It must
be noted that for the various grid methods, the degree of approximation ought to be
different and the related contour maps will be somewhat different, even if from the
same grid method, due to the difference of the number and site (distribution) of the
grid points selected in the calculation, the contour maps may be somewhat differ still.

For some MOs (with certain spin state) of the H3 linear system at HF/STO3G level,
the membership functions and irreducible representation components in relation to P̂
may be used to produce the contour maps as shown in Figs. 10 and 11. In these figures,
the abscissa and the vertical ordinate of the contour map are R13 and R12, respectively.
For both R13 and R12, the grid points were selected with a gap value of 0.1, using the
Kriging grid calculation method [20,21]. In the membership function contour maps,
the fluctuation may appear along the diagonal lines. However, according to the the-
oretic analysis or calculated for the state in the diagonal line using Gaussian [19],
the membership functions always equal unity. It means that such fluctuation may be
introduced by the approximation in the grid calculation method. As we increase the
grid points in the dividing line, such fluctuation will be weakened and smoothed grad-
ually. As the grid points increase to 10- fold for the dividing line, for the fluctuation
in the most contour maps will be dampened or even removed completely. Generally
speaking, the more grid points are used, the more accurate the grid method and results
become, although the more work load is needed. In principle, such contour maps for
the linear H3 system should be symmetric about the diagonal line, but there may be
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Fig. 10 The membership function contour maps of H3 linear system for certain MOs in relation to P̂ (or
to R̂). Here Xj denotes MOs: X=A and B denote α- and β-spin states, respectively; j=1, 2 and 3 denote
OMO-1, SMO and VMO-1, respectively
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Fig. 11 The asymmetrical representation component Xu contour maps of H3 linear system for SMO in
relation to P̂. For Xj, X=A and B denote α- and β-spin state; j denotes different amounts of grid points:
j=1, to increase the grid points along the dividing line

some small deviation due to the approximation of the grid method. Figure 10 shows
the membership function contour map in relation to the space inversion transformation
P̂ for some MOs of the H3-linear system. The diagonal line in the figure is the dividing
line, and the whole contour map is provided with the symmetry about the dividing
line.

This system has the whole perfect symmetry in relation to P̂R̂, so the corresponding
membership functions would be always unity. The membership functions in relation
to R̂ and P̂ ought to be equality, similar as in the IRC path.

Figure 11 shows the contour maps of asymmetrical representation component Xu
in relation to transformation P̂ for the SMO of the H3-linear system, as for the diagonal
line, the corresponding states would always be asymmetrical, that is, Xu=1.

For other MOs, e.g., OMO-1 and VMO-1, we may obtain similar main representa-
tion component contour map in relation to P̂. For OMO-1 and VMO-1, the representa-
tions with more components in relation to P̂ would be symmetrical. But for SMO, there
is asymmetrical. Since the H3-linear system is provided with the perfect symmetry in
relation to P̂R̂, the corresponding representation ought to be pure symmetrical or pure
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asymmetrical. Moreover, that is true not only for TS, but also for the whole internal
configuration coordinate space. For R̂, there is without the asymmetrical representa-
tion, we can not analyze the related representation component.

5 The fuzzy symmetry for H· · ·F· · ·H system

Now we analyse the H· · ·F· · ·H system, which, similar to the H· · ·H· · ·H system, is a
tri-atomic B· · · A· · · C linear system with the same B and C. The TS of such system
ought to have the perfect symmetry in relation to R̂=Ê and P̂= P̂R̂. The membership
functions of this system in the TS and related MOs ought to be unity. When the sys-
tem departs from the TS, that symmetry will be decreased. To start with, we examine
the variation along the IRC path. Comparing with the H· · · H· · · H system, a F atom
replaces the middle H atom. The HF/STO-3G MOs include the F p-AO contribution.
The potential energy variation of this system at the level of theory along the IRC path
is shown in Fig. 12(A). As shown in the figure, when x-IRC=0 (i.e., TS), the related
potential energy would be at the maximum. Such potential energy curve ought to be
provided with symmetry about the TS. According to the internal configuration coor-
dinate space along the IRC path, we may obtain the atomic normalizing criteria for
corresponding MOs and obtain the membership functions in relation to transforma-
tions P̂R̂, R̂ and P̂ using Eq. 17. Figure 12(B)–(D) show the membership functions in
relation to P̂R̂, R̂ and P̂ versus x-IRC, for σSMO, σOMO-1 and σVMO with the two
spin states, respectively.

Although these membership function curves versus IRC are symmetry about the
TS, they are usually less than one, i.e., having no the perfect symmetry. As shown
in Fig. 12, the following points can be inferred. First, for the TS with x-IRC=0, the
membership functions in relation to the above transformations and for related MOs
are equal to one. Second, for these MOs, their membership functions in relation to
P̂R̂ ought always to be unity for all x-IRC values, but their membership functions
in relation to R̂ and P̂ will be unity only for x-IRC=0 (TS), but less than one for
other x-IRC values. In other words, for the linear tri-atomic B· · · A· · · C system with
the same B and C, P̂R̂ is the perfect symmetry [13,14], but R̂ or P̂ is not the perfect
symmetry. Third, for the MOs with the same spin, the membership functions related
R̂ and P̂ are equality, but they are different for the different spin. Fourth, even though
for the linear tri-atomic B· · · A· · · C system with the same B and C, the corresponding
reaction will not be perfect symmetric in relation to R̂ or P̂, although the related mem-
bership function variation along the IRC path will still be provided with the symmetry
about the TS centre.

It should be noticed that R̂ and P̂ are different transformations. No matter whether
B and C are the same or not, due to operation R̂ or P̂ , the system would be changed
in general in a way that the related membership functions would be less than one.
However, if B and C are the same, the related membership functions will be equal.
Under operation P̂R̂ to such B· · · A· · · C system, we have:

RPR12 = RRP12 = RR13, RPR13 = RR P13 = RR12. (21a)
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Fig. 12 The variation of certain properties for H· · ·F· · ·H system along the IRC path: potential energy,
PE (A), or the membership functions for σSMO (B),σOMO-1 (C) and σVMO-1(D) in two spin states in
relation to transformations P̂R̂, R̂ and P̂, respectively

Meanwhile atoms B and C would commute:

RPR12 = RRP12 = RR13 = R12, RPR13 = RRP13 = RR12 = R13 (21b)

That is, such system will be restored under this operation of P̂R̂, and so the related
membership function will be unity.

In order to describe the irreducible representation component, we may need to
introduce the imaginary AOs as we did for the irreducible representation component
of hydrogen halide MOs in relation to P̂ irreducible representation component [8],
where H atom 1s-AO was combined with several AOs of the halide atom to form the
MO. Using the imaginary AO method, for hydrogen halide molecules [8], we intro-
duce more imaginary AOs which may be linear combined to replace the only 1s-AO
of H atom. The introduced more imaginary AOs correspond to the various AOs of
halide atom in the symmetry operation of P̂, respectively. Similarly, we may analyze
the MO irreducible representation components in relation to P̂ for H· · ·F· · · H system.
The AOs of F atom will be combined with the AOs of the two H atoms, and, especially,
the F pz-AO will be related to two s-AOs of two H atoms. In this way, we may obtain
the irreducible representation components for σ -SMO, σ -OMO1 and σ -VMO1 of the

123



J Math Chem (2008) 44:46–74 65

system in relation to P̂ as shown in Fig. 13. The πMOs conserve the p-AO character
of the middle F atom, their representations are pure asymmetrical, i.e., X(U)= 1 and
X(G)= 0.

It is interesting, for the H· · · F· · · H system, as shown in Fig. 13, that the main
representation of σSMO is symmetrical— X(G)>X(U), but those of σOMO-1 and
σVMO-1 are asymmetrical — X(G)<X(U). Comparing with Fig. 9, we noted that, for
the H· · ·H· · ·H system, the main representation ofσSMO is asymmetrical X(G)<X(U),
but those of σOMO-1 and σVMO-1 are symmetrical X(G)>X(U).

For the H· · ·F· · ·H system along the IRC path, the related fuzzy symmetry for the
internal configuration coordinate plane may be analyzed in the same fashion as for
the H· · ·H· · ·H system, the basic rules and many results are similar in essence, even
though the corresponding calculation will be more complicated owing to the p-AO
of mid F atom. Some difference and similarity in connection to the representation
components for these two systems can also be seen as shown in Figs. 13 and 9.
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Fig. 13 Variation of the irreducible representation components of H· · ·F· · ·H system along the IRC path
for (A) σOMO-1, (B) σVMO-1 and (C) σSMO with two spin states in relation to transformation P̂
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6 The fuzzy symmetry for the H· · ·H· · ·F system

6.1 The fuzzy symmetry for the IRC path and the dividing line of H· · ·H· · ·F system

Now we examine the linear tri-atomic B· · · A· · · C system with different B and C
atoms. In this system, there is no perfect P̂R̂ symmetry. Therefore, the membership
functions for the related MOs in relation to P̂R̂, R̂ and P̂ ought to be less than unity. For
TS, the relationships, P̂R̂= P̂ and R̂ =Ê, are still true. For such system, the membership
functions in relation to R̂P̂ and P̂ versus the IRC path curves would intersect at TS, and
the membership functions in relation to R̂ would be unity at TS. Taking this system,
H· · ·H· · ·F, as an example, we show the internal configuration coordinates R12(RHH)

and R13(RHF) vs the IRC path in Fig. 4(B). For TS, R12 and R13 are unequal. The
potential energy along the IRC path will be maximal in TS, but it is non-symmetrical
about TS. For the MOs of such system, there are not perfect symmetry in relation to
transformations P̂R̂, R̂ and P̂, and so we may only analyze their fuzzy symmetry.

We first analyze the fuzzy symmetry of the MOs of the H· · ·H· · ·F system along the
IRC path in relation to the P̂R̂, R̂ and P̂. For x-IRC �= 0 (i.e. not TS), the correspond-
ing state of such system will change due to operation R̂: one state in the IRC path
ought to change to another one in the path. The IRC values of the final state and of
initial state would be opposite (different by a merely negative sign). According to Fig.
4(B), we may note values of R12 and R13 corresponding to the final state from initial
state under operation R̂, whereas the corresponding system under operation P̂ may
be treated as the ordinary point symmetrical transformation. We may then calculate
the related MOs using Gaussian [19] as well as the atomic criteria. Furthermore, we
may obtain the membership functions in relation to P̂R̂, R̂ and P̂ . Figure 14 shows the
results using HF/STO-3G, and the membership functions of σSMO (two spin states)
of the system along the IRC path in relation to R̂ and P̂. The potential energy is max-
imal at TS (x-IRC=0). Although the membership function reach the maximum in
relation to R̂ at TS (x-IRC=0), the maximum in relation to P̂ occurs at other state
(x-IRC�=0). Morever, the membership functions in relation to R̂ and P̂ are unequal.
Figure 15 shows the membership functions for σSMO (two spin states) of the linear
tri-atomic H· · ·H· · ·F systems along the IRC path in relation to P̂R̂,R̂ and P̂. It should
be noted that there are not perfect symmetry in relation to P̂R̂, and so the corresponding
membership functions will be less than one.

Figures 16 and 17 show the membership functions in relation to P̂R̂, R̂ and P̂ respec-
tively for σOMO-1 and σVMO-1 (two spin states) of the system along the IRC path.
Although the variation curves of various MOs are considerably different, comparing
with Fig. 15, we note the following common features. First, the membership functions
in relation to P̂R̂ and R̂ versus IRC path are symmetrical about TS (x-IRC=0), but
they are not in relation to P̂. Moreover, in relation to P̂R̂ andP̂ the membership func-
tions are equality at TS. Furthermore, the membership function in relation to R̂ equals
one at TS.

The membership functions for various MOs along the dividing line in relation to R̂
ought to be unity because R̂ corresponding to the identity Ê, and those in relation to P̂
and P̂R̂ are equal as shown in Fig. 18 for σSMO (two spin states).
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Fig. 14 Variation of the membership functions of H· · ·H· · ·F system along the IRC path for σSMO in two
spin states in relation to P̂ (A) and R̂ (B)
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Fig. 15 Variation of the membership functions of H· · ·H· · ·F system along the IRC path for σSMO in (A)
α-spin and (B) β-spin states in relation to P̂, R̂ and P̂R̂
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Fig. 16 Variation of the membership functions of H· · ·H· · ·F system along the IRC path for σOMO-1 in
(A) α-spin and (B) β-spin states in relation to P̂, R̂ and P̂R̂
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Fig. 17 Variation of the membership functions of H· · ·H· · ·F system along the IRC path for σVMO-1 in
(A) α-spin and (B) β-spin states in relation to P̂, R̂ and P̂R̂
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Fig. 18 Variation of the membership functions of H· · ·H· · ·F system along the dividing line for σSMO
in α-spin (black) and β-spin (red) states in relation to P̂ and P̂R̂: the membership function in relation to R̂
equal to one along the dividing line

For the MOs of linear tri-atomic H· · ·H· · ·F system, their irreducible representation
components in relation to P̂, R̂ and P̂R̂ may be examined in principle, but there may be
some various methods for this purpose, and some of them may obtain some similar but
not quite same results. Further work should be done, we will not discuss them here.
A summary on the fuzzy symmetry characteristics in connection to the linear tri-atomic
B· · · A· · · C systems with the same B and C (such as H· · ·H· · ·H and H· · ·F· · ·H) and
different B and C atoms (such as H· · ·H· · ·F) is shown in Table 2.
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Table 2 Variation of the membership functions of B· · · A· · · C system for the MOs on the IRC path and
dividing lines under transformations P̂, R̂ and P̂R̂

Transformation Same B and C atoms Different B and C atoms

On the IRC path
Membership functions: P̂ Symmetry about the transition

state in the IRC-scale
No symmetry about the transi-

tion state in the IRC-scale
Same as that in relation to R̂ No same as that in relation to R̂

Membership functions: R̂ Symmetry about the transition
state in the IRC-scale

Symmetry about the transition
state in the IRC-scale

Same as that in relation to P̂ Not same as that in relation to P̂
Membership functions: P̂R̂ Equal to one Symmetry about the transition

state in the IRC-scale
On the dividing line
Membership functions: P̂ Equal to one No symmetry about the transi-

tion state in the IRC-scale
Same as that in relation to P̂R̂

Membership functions: R̂ Equal to one Equal to one
Membership functions: P̂R̂ Equal to one No symmetry about the transi-

tion state in the IRC-scale
Same as that in relation to P̂

6.2 The fuzzy symmetry for the internal configuration space of the linear H· · ·H· · ·F
system

For the membership functions of any internal configuration state in relation to P̂, R̂ and
P̂R̂ for the linear tri-atomic H· · ·H· · ·F system, we may obtain the final internal config-
uration states about these transformations according to Eqs. 12–19. We may calculate
the MO-LCAO coefficients for the states before and after the operation using Gaussian
[19], and then obtain the atomic criteria and the membership functions related to the
transformations. Using the calculated results, we can compute point by point the val-
ues of these membership functions to form the contour map according to Kriging grid
method [20,21]. The contour maps of the membership function in relation to P̂, R̂ and
P̂R̂ for the SMO (two spin state) of the syatem are shown in Fig. 19. As for other MOs,
the treatment is similar and omitted here. For convenient to analysis, the IRC-path and
dividing line (curve) are also shown in Fig. 19. Comparing with the Fig. 10 (the H3
system as the example for the linear tri-atomic B· · · A· · · C system with same kinds
atoms B and C), the membership functions in relation to R̂ and P̂ the contour maps
are different for H· · ·H· · ·F in Fig. 19, and the membership functions in relation to P̂R̂
are not always unity.

On the other hand, as shown in Figs. 14– 17, for the MOs of this system, the mem-
bership functions curves in relation to R̂ and P̂R̂ along the IRC path are symmetry
about the TS. Why is such symmetry not shown in Fig. 19? The cause is that we
used the common nature scale (e.g. angstrom) in Fig. 19 whereas the IRC scales is
used in Figs. 14–17. In fact, as shown in Fig. 19, although there is not the symmetry
obviously, for the membership functions in relation to R̂ and P̂R̂ the contour maps, the
membership function seems somewhat well-distribution about the dividing curve.
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Fig. 19 The membership function contour maps in relation to the P̂, R̂ and P̂R̂ for SMO (α and β spin
states) of linear H· · ·H· · ·F system coorsponding to various internal configurations. The common nature
scale (the Cartesian coordinate scale) is used for the internal configuration coordinate R12 (ordinate) and
R13(abscissa). The blue and red curves denote the IRC-path and dividing line, respectively
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According to the natural scale, both IRC path and dividing line are not straight lines
in Fig. 19. If we present the contour maps of the membership functions in relation to P̂,
R̂ and P̂R̂ in the IRC scale, we can have Fig. 20, where the blue diagonal lines are the
IRC paths and the red diagonal lines are the dividing lines. The intersection point of
these two diagonal lines and the origin point of the coordinate system ought to be con-
nected with the TS. Since R12 and R13 are monotonically increasing and decreasing
respectively along with the IRC, the initial (reactant) and final (product) states of this
reaction system lie in the upper right and lower left parts of the internal configuration
coordinate space, respectively. Similar to Figs. 14–17, for the MOs of such system,
there is the symmetry about the dividing line for the membership functions in relation
to R̂ and P̂R̂. However, there is not such symmetry for the membership functions in
relation to P̂.

In addition, the membership functions in relation to R̂ in the dividing line would
be always unity, but there is some fluctuation in Fig. 20 due to the error introduced in
the grid calculation.

By the way, using the nature and IRC scales, we can get the potential energy contour
maps of linear HHF system with somewhat different shapes (Fig. 21). Although the
intersection points of the IRC path and dividing lines are the TS and saddle points for
both these two scales, however the IRC-path and dividing lines are the straight lines
in IRC-scale case, and the curves (not straight) in nature scale case, respectively.

7 Conclusions

In our previous papers on the molecular fuzzy symmetry, we analyzed some static and
stable molecules for which the related configuration is usually only one. In this paper,
we analyze some simple linear tri-atomic dynamic systems in which there are usually
many related configurations, and their corresponding fuzzy symmetry characteristics
would be complicated. Besides the conventional point symmetry transformations, a
special transformation called reaction reversal had been analyzed. The H· · · H· · · H,
H· · · F· · · H and H· · · H· · · F systems are analyzed in detail. The main conclusion
includes the following.

1. The configuration of the linear tri-atomic system B· · · A· · · C may be changed
owing to the operation of some common transformations: space inversion (P̂),
reaction reversal (R̂) and their joint transformation (P̂R̂) which are somewhat
similar to P̂ and R̂, but different in essence.

2. For the linear tri-atomic B· · · A· · · C system with the same B and C atoms, there
is no space inversion (P̂) nor reaction reversal (R̂) symmetry, but there is joint
P̂R̂ symmetry. For systems with different B and C, we may analyze their fuzzy
symmetry in relation to P̂, R̂ or P̂R̂.

3. For the linear tri-atomic B· · · A· · · C system, we chose AB and AC atomic dis-
tances (i.e. R13 and R12, respectively) as the internal configuration space coordi-
nates. For R12 and R13, we used both the Cartesian coordinates scale and the IRC
(intrinsic reaction coordinate) scale. In the IRC-scale, the transition state (TS) will
lie in the origin in the internal configuration space. Through such origin, there are
two diagonal lines corresponding to the IRC-path and dividing line. For the initial
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Fig. 20 The membership function contour maps of linear H· · ·H· · ·F system in relation to P̂, R̂ and P̂R̂ for
SMO in α and β spin states corresponding to various internal configurations. The IRC scale is used for the
internal configuration coordinates R12 (vertical ordinate) and R13 (abscissa). The blue and red diagonal
lines denoted the IRC-path and dividing line, respectively

and final configuration states under operation P̂, R̂ and P̂R̂, we obtained the atomic
criteria of MOs and the membership functions in relation to P̂, R̂ and P̂R̂ for the
linear tri-atomic system

4. For the TS, R̂ corresponds to the identity (Ê), and so the membership functions in
relation to P̂ and union P̂R̂ are equality. For the system with the same B and C, the
TS would possess the perfect symmetry in relation to P̂, R̂ and P̂R̂. For systems
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Fig. 21 The potential energy contour maps of linear H· · ·H· · ·F system corresponding to various internal
configurations. The common nature scale and the IRC scale are used in figures (A) and (B), respectively.
The intersection point of blue (IRC path) line and red (dividing) line denoted the TS

with different B and C, the TS will have only the fuzzy symmetry in relation to
P̂, R̂ and P̂R̂. We examined the TS of the linear H· · ·H· · ·X (X=F) system as an
example.

5. For the system with the same B and C, e.g., H· · ·H· · ·H and H· · ·F· · ·H, we dis-
cussed their membership functions in relation to P̂, R̂ and P̂R̂ along the IRC path
and dividing line. These systems have the perfect symmetry in relation to P̂R̂, so
the membership functions in relation to P̂R̂ would be unity and invariable along
both IRC-path and dividing line. The membership functions in relation to P̂ and R̂
along the IRC-path are equal, less one and provide with the symmetry about the
TS. For different spin states of the same MO, the related membership functions are
slightly different. Since all configurations along the dividing line have the perfect
symmetry in relation to P̂, R̂ and P̂R̂, so the corresponding membership functions
will be unity.

6. For the dividing line, since R̂ equals the identity transformation Ê, the eigenvalue
will always be one. On the other hand, corresponding to R̂, there is not possi-
ble a state with the eigenvalue = −1, we can not examine the related irreducible
representation components. However, we examined this in relation to P̂ and P̂R̂.
For the linear tri-atomic B· · · A· · · C system with the same B and C atoms, there
is the perfect symmetry in relation to P̂R̂, and the related membership functions
shall be unity. The corresponding irreducible representation, same as that of the
related TS, is pure. For H· · · H· · · H and H· · · F· · · H systems, their SMOs belong
to the asymmetrical and symmetrical representations, respectively, and both their
OMO-1 and VMO-1 belong to the symmetrical and asymmetrical ones, for various
systems respectively.

7. For the linear tri-atomic B· · · A· · · C system with different B and C atoms, such as
H· · · H· · · F, we analysed the membership functions in the IRC-scale in relation
to P̂, R̂ and P̂R̂ along the IRC path, where the membership functions for R̂ and P̂R̂
are provided with the symmetry about the TS. The membership functions along
the dividing line in relation to R̂ are always unity, and those in relation to P̂ and
P̂R̂ are equal.
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8. For the system with different B and C atoms, such as H· · · H· · · F, we also examined
the membership functions in relation to P̂, R̂ and P̂R̂ in the internal configuration
space. Since the common nature scale is not convenient to show corresponding
symmetry titles, we focused on the IRC scale to examine the membership func-
tions, which gives interesting results. In the IRC-scale, the membership functions
in relation to R̂ and P̂R̂ are provided with the symmetry about the dividing surface
(line), but not in relation to P̂.
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